
A deep learning-based cardio-vascular disease diagnosis system
Author(s) -
Hamdan Bensenane,
Djemai Aksa,
Fawzi Walid Omari,
Abdellatif Rahmoun
Publication year - 2022
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v25.i2.pp963-971
Subject(s) - deep learning , computer science , preprocessor , artificial intelligence , artificial neural network , machine learning , ehealth , health care , economics , economic growth
Recently ehealth technologies are becoming an overwhelming aspect of public health services that provides seamless access to healthcare information. Machine learning tools associated with IoT technology play an important role in developing such health technologies. This paper proposes a decision support system-based system (DSS) to make diagnosis of cardiovascular diseases. It uses deep learning approaches that classify electrocardiogram (ECG) signals. Thus, a two-stage long-short term memory (LSTM) based neural network architecture, along with an adequate preprocessing of the ECG signals is designed as a diagnosis-aided system for cardiac arrhythmia detection based on an ECG signal analysis. This deep learning based cardio-vascular disease diagnosis system (namely ‘DLCVD’) is built to meet higher performance requirements in terms of accuracy, specificity, and sensitivity. This must also be capable of an online real-time classification. Experimental results using the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database show that DLCVD led to outstanding performance