
Renewable energy based dynamic tariff system for domestic load management
Author(s) -
Kuheli Goswami,
Arindam Kumar Sil
Publication year - 2022
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v25.i2.pp626-638
Subject(s) - particle swarm optimization , tariff , renewable energy , computer science , grid , genetic algorithm , electric power system , mathematical optimization , energy management system , energy management , power (physics) , reliability engineering , energy (signal processing) , engineering , economics , algorithm , electrical engineering , statistics , physics , geometry , mathematics , quantum mechanics , machine learning , international trade
To deal with the present power-scenario, this paper proposes a model of an advanced energy management system, which tries to achieve peak clipping, peak to average ratio reduction and cost reduction based on effective utilization of distributed generations. This helps to manage conventional loads based on flexible tariff system. The main contribution of this work is the development of three-part dynamic tariff system on the basis of time of utilizing power, available renewable energy sources (RES) and consumers’ load profile. This incorporates consumers’ choice to suitably select for either consuming power from conventional energy sources and/or renewable energy sources during peak or off-peak hours. To validate the efficiency of the proposed model we have comparatively evaluated the model performance with existing optimization techniques using genetic algorithm and particle swarm optimization. A new optimization technique, hybrid greedy particle swarm optimization has been proposed which is based on the two aforementioned techniques. It is found that the proposed model is superior with the improved tariff scheme when subjected to load management and consumers’ financial benefit. This work leads to maintain a healthy relationship between the utility sectors and the consumers, thereby making the existing grid more reliable, robust, flexible yet cost effective.