z-logo
open-access-imgOpen Access
A new smart approach of an efficient energy consumption management by using a machine-learning technique
Author(s) -
Maha Yousif Hasan,
Dheyaa Jasim Kadhim
Publication year - 2022
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v25.i1.pp68-78
Subject(s) - energy consumption , computer science , electricity , electric power , energy (signal processing) , consumption (sociology) , power (physics) , electric energy consumption , cloud computing , efficient energy use , energy management , limit (mathematics) , reliability engineering , simulation , automotive engineering , real time computing , electric energy , electrical engineering , engineering , statistics , operating system , mathematics , social science , physics , quantum mechanics , sociology , mathematical analysis
Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is satisfied. It divides the measured data for actual power (A_p ) of the electrical model into two portions: the training portion is selected for different maximum actual powers, and the validation portion is determined based on the minimum output power consumption and then used for comparison with the actual required input power. Simulation results show the energy expenditure problem can be solved with good accuracy in energy consumption by reducing the maximum rate (A_p ) in a given time (24) hours for a single house, as well as electricity’s bill cost, is reduced.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here