z-logo
open-access-imgOpen Access
A review of various image fusion types and transforms
Author(s) -
Ayodeji Olalekan Salau,
Shruti Jain,
Joy Nnenna Eneh
Publication year - 2021
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v24.i3.pp1515-1522
Subject(s) - discrete cosine transform , peak signal to noise ratio , image fusion , artificial intelligence , computer vision , discrete wavelet transform , computer science , rgb color model , signal to noise ratio (imaging) , mathematics , fusion , pattern recognition (psychology) , image (mathematics) , wavelet transform , wavelet , telecommunications , linguistics , philosophy
Utilizing multiple views of an image is an important approach in digital photography, video editing, and medical image fusion applications. Image fusion (ImF) methods are used to improve an image's quality and remove noise from the image signal, resulting in a higher signal-to-noise ratio. A complete assessment of the literature on the different transform kinds, techniques, and rules utilized in ImF is presented in this paper. To assess the outcomes, a white flower image was fused using discrete wavelet transform (DWT) and discrete cosine transform (DCT) techniques. For validation of results, the red, green, blue (RGB) and intensity hue saturation (IHS) values of individual and fused images were evaluated. The results obtained from the fused images with the spatial IHS transform method give a remarkable performance. Furthermore, the results of the performance evaluation using DWT and DCT fusion techniques show that the same peak signal to noise ratio (PSNR) of 114.04 was achieved for both PSNR 1 and PSNR 2 for DCT, and different results were obtained for DWT. For signal to noise ratio (SNR), SNR 1 and SNR 2 achieved slightly similar values of 114.00 and 114.01 for DCT, while a SNR of 113.28 and 112.26 was achieved for SNR 1 and SNR 2 respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here