z-logo
open-access-imgOpen Access
Optimal integration of photovoltaic distributed generation in electrical distribution network using hybrid modified PSO algorithms
Author(s) -
Nasreddine Belbachir,
Mohamed Zellagui,
Adel Lasmari,
Claude Ziad El-Bayeh,
Benaissa Bekkouche
Publication year - 2021
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v24.i1.pp50-60
Subject(s) - particle swarm optimization , photovoltaic system , overcurrent , distributed generation , voltage , algorithm , computer science , renewable energy , mathematical optimization , engineering , mathematics , electrical engineering
The satisfaction of electricity customers and environmental constraints imposed have made the trend towards renewable energies making them more essential due to their advantages as reducing power losses and ameliorating system’s voltage profiles and reliability. This article addresses the optimal location and size of multiple distributed generations (DGs) based on solar photovoltaic panels (PV) connected to electrical distribution network (EDN) using the various proposed hybrid particle swarm optimization (PSO) algorithms based on chaotic maps and adaptive acceleration coefficients. These algorithms are implemented to optimally allocate the DGs based PV (PV-DG) into EDN by minimizing the multi-objective function (MOF), which is represented as the sum of three technical parameters of the total active power loss (TAPL), total voltage deviation (TVD), and total operation time (TOT) of overcurrent relays (OCRs). The effectiveness of the proposed PSO algorithms were validated on both standards IEEE 33-bus, and 69-bus. The optimal integrating of PV-DGs into EDNs reduced the TAPL percentage by 56.94 % for the IEEE 33-bus and by 61.17 % for the IEEE 69-bus test system, enhanced the voltage profiles while minimizing the TVD by 37.35 % and by 32.27 % for two EDNs, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here