
Design and implementation of bi-directional converter with internet of things control based reading
Author(s) -
Wisam Dawood Abdullah,
Raad Z. Homod,
Abdulbasit H. Ahmed
Publication year - 2021
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v23.i2.pp938-952
Subject(s) - transformer , forward converter , flyback converter , computer science , electrical engineering , electronic engineering , inverter , voltage , boost converter , engineering , embedded system
In this paper, a new technique to monitor and control bidirectional DC-DC converter was designed and implemented precisely. A prototype of a complete system is verified with efficient communication capabilities. This system is realized by integrating the internet of things (IoT) operating system and the bidirectional DC-DC converter. The IoT communication facilities further develop and extend the platform for this system. The DC-DC converter with the soft switching technique will then convert the battery voltage to a high voltage of 380V inverter bus in emergencies via boost converter mode. High-frequency toroidal transformer has been used for power level shifting and isolation between the primary and secondary sides of the transformer. The closed-loop control scheme is implemented in software by using a high-performance 32-bit STM32 micro controller. IoT technique is used to find current, voltage and perform the communication smoothly through Wi-Fi sensors to complete the design of the system. The results of the proposed system prove the effectiveness of the proposed system with high-performance specifications.