
Semantic feature extraction method for hyperspectral crop classification
Author(s) -
M. C. Girish Baabu,
M. C. Padma
Publication year - 2021
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v23.i1.pp387-395
Subject(s) - hyperspectral imaging , pattern recognition (psychology) , artificial intelligence , support vector machine , computer science , feature extraction , feature (linguistics) , feature selection , overhead (engineering) , set (abstract data type) , spectral bands , mathematics , remote sensing , geography , philosophy , linguistics , programming language , operating system
Hyperspectral imaging (HSI) is composed of several hundred of narrow bands (NB) with high spectral correlation and is widely used in crop classification; thus induces time and space complexity, resulting in high computational overhead and Hughes phenomenon in processing these images. Dimensional reduction technique such as band selection and feature extraction plays an important part in enhancing performance of hyperspectral image classification. However, existing method are not efficient when put forth in noisy and mixed pixel environment with dynamic illumination and climatic condition. Here the proposed Sematic Feature Representation based HSI (SFR-HSI) crop classification method first employ Image Fusion (IF) method for finding meaningful features from raw HSI spectrally. Second, to extract inherent features that keeps spatially meaningful representation of different crops by eliminating shading elements. Then, the meaningful feature set are used for training using Support vector machine (SVM). Experiment outcome shows proposed HSI crop classification model achieves much better accuracies and Kappa coefficient performance.