
Geolocation based air pollution mobile monitoring system
Author(s) -
Aya Mazin Talib,
Mahdi Nsaif Jasim
Publication year - 2021
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v23.i1.pp162-170
Subject(s) - environmental science , computer science , pollution , air pollution , global positioning system , geolocation , c4.5 algorithm , decision tree , real time computing , meteorology , data mining , support vector machine , telecommunications , operating system , geography , artificial intelligence , naive bayes classifier , chemistry , ecology , organic chemistry , biology
Air pollution is conducted to harmful substances like solid particles, gases or liquid droplets. More pollutants CO, SO2, NOx, CO2.This research is proposed the design and implementation of mobile, low cost and accurate air pollution monitoring system using Arduino microcontroller and gas sensor like MQ2, MQ131, MQ135, MQ136, DHT22, measuring materials mentioned above, smoke, Acetone, Alcohol, LPG, Toluene, temperature, humidity and GPS sensor”NEO-6M” that track the location of air pollution data, and display the analysis result on ESRI maps. The system also save the results on SQL server DB. The data is classified using data mining algorithms, presenting the result on a map helps governmental organizations, nature guards, and ecologists to analyze data in real time to simplify the decision making process. The proposed system uses J48 pruning tree classifier generated using cross validation of fold (10) with highest accuracy 100%, while IBK ≈99.67, Naïve bays ≈90.89, and SVM ≈81.4. It’s found that the common air quality for Baghdad (study area) is between (“Good”, “Satisfactory”, and “Moderately”) for 1835 records of air samples during (January and February 2021) time period.