
Mobility-prediction and energy optimization for multi-channel multi-interface ad hoc networks in the presence of location errors
Author(s) -
Hassan Faouzi,
Mohammed Boutalline
Publication year - 2021
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v22.i1.pp315-325
Subject(s) - network packet , computer network , computer science , routing protocol , mobile ad hoc network , network layer , channel (broadcasting) , wireless ad hoc network , routing (electronic design automation) , network simulation , layer (electronics) , wireless , telecommunications , chemistry , organic chemistry
We present a mobility-prediction and energy optimization solution for multi-channel multi-interface (MCMI) ad hoc networks in the presence of location errors. This solution includes routing of the MCMI communication links that adapt to dynamic channel, traffic conditions, interference and mobility of nodes. We start first with implementing a novel cross-layer routing solution in order to share information between network and MAC layer, the benefit of this technique is to collect information about the channel quality and residual energy of the nodes and send them directly to the network layer. Next, we present a mobility-prediction model using Kalman filter to predict accurate locations and enhance routing performance, through estimating link duration and selecting reliable routes. The performance of proposed mechanism is measured using NS2.35 simulations with different scenarios and varying load in a network. Comparative analysis of simulation results shows better performance of our protocol (ME-MCMI AODV) in terms of reducing end-to-end delay, total dropped packets and increasing network lifetime and packet delivery ratio (PDR).