z-logo
open-access-imgOpen Access
Protecting sensitive information utilizing an efficient association representative rule concealing algorithm for imbalance dataset
Author(s) -
Mylam Chinnappan Babu,
S. Pushpa
Publication year - 2019
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v15.i1.pp527-534
Subject(s) - association rule learning , computer science , associative property , information sensitivity , classifier (uml) , data mining , association (psychology) , artificial intelligence , computer security , mathematics , psychology , pure mathematics , psychotherapist
In data mining, discrimination is the detrimental behavior of the people which is extensively studied in human society and economical science. However, there are negative perceptions about the data mining. Discrimination has two categories; one is direct, and another is indirect. The decisions depend on sensitive information attributes are named as direct discrimination, and the decisions which depend on non-sensitive information attributes are called as indirect discrimination which is strongly related with biased sensitive ones. Privacy protection has become another one of the most important problems in data mining investigation.  To overcome the above issues, an Efficient Association Representative Rule Concealing (EARRC) algorithm is proposed to protect sensitive information or knowledge and offer privacy protection with the classification of the sensitive data. Representative rule concealing is one kind of the privacy-preserving mechanisms to hide sensitive association rules. The objective of this paper is to reduce the alternation of the original database and perceive that there is no sensitive association rule is obtained. The proposed method hides the sensitive information by altering the database without modifying the support of the sensitive item. The EARRC is a type of association classification approach which integrates the benefits of both associative classification and rule-based PART (Projective Adaptive Resonance Theory) classification. Based on Experimental computations, proposed EARRC+PART classifier improves 1.06 NMI and 5.66 Accuracy compared than existing methodologies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here