z-logo
open-access-imgOpen Access
An Accurate and Efficient Scheduler for Hadoop MapReduce Framework
Author(s) -
D C Vinutha,
G. T. Raju
Publication year - 2018
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v12.i3.pp1132-1142
Subject(s) - cloud computing , computer science , job shop scheduling , task (project management) , distributed computing , service provider , resource (disambiguation) , database , scheduling (production processes) , service (business) , operating system , computer network , mathematical optimization , schedule , economy , mathematics , economics , management
MapReduce is the preferred computing framework used in large data analysis and processing applications. Hadoop is a widely used MapReduce framework across different community due to its open source nature. Cloud service provider such as Microsoft azure HDInsight offers resources to its customer and only pays for their use. However, the critical challenges of cloud service provider is to meet user task Service level agreement (SLA) requirement (task deadline). Currently, the onus is on client to compute the amount of resource required to run a job on cloud. This work present a novel makespan model for Hadoop MapReduce framework namely OHMR (Optimized Hadoop MapReduce) to process data in real-time and utilize system resource efficiently. The OHMR present accurate model to compute job makespan time and also present a model to provision the amount of cloud resource required to meet task deadline. The OHMR first build a profile for each job and computes makespan time of job using greedy approach. Furthermore, to provision amount of resource required to meet task deadline Lagrange Multipliers technique is applied. Experiment are conducted on Microsoft Azure HDInsight cloud platform considering different application such as text computing and bioinformatics application to evaluate performance of OHMR of over existing model shows significant performance improvement in terms of computation time. Experiment are conducted on Microsoft Azure HDInsight cloud. Overall good correlation is reported between practical makespan values and theoretical makespan values.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here