
A Cross Slot Coupling to Enhance Bandwidth of Dual-Layer SIW Structure
Author(s) -
Muhammad Hafiz,
Mohd Haizal Jamaluddin,
Raghuraman Selvaraju
Publication year - 2018
Publication title -
indonesian journal of electrical engineering and computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.241
H-Index - 17
eISSN - 2502-4760
pISSN - 2502-4752
DOI - 10.11591/ijeecs.v10.i2.pp617-622
Subject(s) - bandwidth (computing) , printed circuit board , microstrip , multi band device , coupling (piping) , electronic engineering , communications satellite , planar , optoelectronics , materials science , engineering , computer science , electrical engineering , satellite , telecommunications , mechanical engineering , antenna (radio) , aerospace engineering , computer graphics (images)
In this paper, design characteristics of cross slot coupling have been explored and realized in a proposed dual-layer SIW prototype for bandwidth enhancement at 10.0 GHz. The assembled prototype consists of two SMA-microstrip input/output interface with low-loss microstrip-taper via transition and two manually stacked SIW structures electrically connected via a small cross slot coupling design. The proposed dual-layer SIW structure is designed using CST software and fabricated using conventional Printed Circuit Board (PCB) manufacturing process on Rogers 4003 C with = 3.38 and = 0.813 mm. The close agreement between simulated and measured results is observed within a frequency range studied of 9.2 GHz to 11.2 GHz with 19.0 % bandwidth performance. The used of cross slot coupling design in the assembled dual-layer SIW structure indicated 9.0 % bandwidth enhancement compared to the conventional multilayer design with rectangular slot coupling. The assembled dual-layer SIW structure with cross slot coupling design shows potential in several RF applications such as radar and satellite communication.