z-logo
open-access-imgOpen Access
Implementation of AES using biometric
Author(s) -
R. Srividya,
B. Ramesh
Publication year - 2019
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v9i5.pp4266-4276
Subject(s) - computer science , mobile ad hoc network , encryption , biometrics , key (lock) , computer security , advanced encryption standard , computer network , process (computing) , field (mathematics) , embedded system , operating system , mathematics , network packet , pure mathematics
Mobile Adhoc network is the most advanced emerging technology in the field of wireless communication. MANETs mainly have the capacity of self-forming, self-healing, enabling peer to peer communication between the nodes, without relying on any centralized network architecture. MANETs are made applicable mainly to military applications, rescue operations and home networking. Practically, MANET could be attacked by several ways using multiple methods. Research on MANET emphasizes on data security issues, as the Adhoc network does not befit security mechanism associated with static networks. This paper focuses mainly on data security techniques incorporated in MANET. Also this paper proposes an implementation of Advanced Encryption Standard using biometric key for MANETs. AES implementation includes, the design of most robust Substitution-Box implementation which defines a nonlinear behavior and mitigates malicious attacks, with an extended security definition. The key for AES is generated using most reliable, robust and precise biometric processing. In this paper, the input message is encrypted by AES powered by secured nonlinear S-box using finger print biometric feature and is decrypted using the reverse process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here