
The saturation of population fitness as a stopping criterion in genetic algorithm
Author(s) -
Fong Foo Yeng,
Soo Kum Yoke,
Azrina Suhaimi
Publication year - 2019
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v9i5.pp4130-4137
Subject(s) - survival of the fittest , population , chromosome , genetic algorithm , mathematical optimization , algorithm , local optimum , computer science , mathematics , genetics , biology , demography , sociology , gene
Genetic Algorithm is an algorithm imitating the natural evolution process in solving optimization problems. All feasible (candidate) solutions would be encoded into chromosomes and undergo the execution of genetic operators in evolution. The evolution itself is a process searching for optimum solution. The searching would stop when a stopping criterion is met. Then, the fittest chromosome of last generation is declared as the optimum solution. However, this optimum solution might be a local optimum or a global optimum solution. Hence, an appropriate stopping criterion is important such that the search is not ended before a global optimum solution is found. In this paper, saturation of population fitness is proposed as a stopping criterion for ending the search. The proposed stopping criteria was compared with conventional stopping criterion, fittest chromosomes repetition, under various parameters setting. The results show that the performance of proposed stopping criterion is superior as compared to the conventional stopping criterion.