
Linear Phase FIR Low Pass Filter Design Based on Firefly Algorithm
Author(s) -
Moath Sababha,
Mohamed Zohdy
Publication year - 2018
Publication title -
international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.277
H-Index - 22
ISSN - 2088-8708
DOI - 10.11591/ijece.v8i6.pp4356-4365
Subject(s) - firefly algorithm , particle swarm optimization , firefly protocol , computer science , finite impulse response , algorithm , convergence (economics) , mathematical optimization , computation , filter (signal processing) , mathematics , zoology , economics , computer vision , biology , economic growth
In this paper, a linear phase Low Pass FIR filter is designed and proposed based on Firefly algorithm. We exploit the exploitation and exploration mechanism with a local search routine to improve the convergence and get higher speed computation. The optimum FIR filters are designed based on the Firefly method for which the finite word length is used to represent coefficients. Furthermore, Particle Swarm Optimization (PSO) and Differential Evolution algorithm (DE) will be used to show the solution. The results will be compared with PSO and DE methods. Firefly algorithm and Parks–McClellan (PM) algorithm are also compared in this paper thoroughly. The design goal is successfully achieved in all design examples using the Firefly algorithm. They are compared with that obtained by using the PSO and the DE algorithm. For the problem at hand, the simulation results show that the Firefly algorithm outperforms the PSO and DE methods in some of the presented design examples. It also performs well in a portion of the exhibited design examples particularly in speed and quality.