
Data Mining Approach of Accident Occurrences Identification with Effective Methodology and Implementation
Author(s) -
Meenu Gupta,
Vijender Kumar Solanki,
Vijay Kumar Singh,
Vicente GarcíaDíaz
Publication year - 2018
Publication title -
international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.277
H-Index - 22
ISSN - 2088-8708
DOI - 10.11591/ijece.v8i5.pp4033-4041
Subject(s) - computer science , support vector machine , machine learning , artificial intelligence , classifier (uml) , data mining , identification (biology) , globe , data stream mining , medicine , botany , ophthalmology , biology
Data mining is used in various domains of research to identify a new cause for tan effect in the society over the globe. This article includes the same reason for using the data mining to identify the Accident Occurrences in different regions and to identify the most valid reason for happening accidents over the globe. Data Mining and Advanced Machine Learning algorithms are used in this research approach and this article discusses about hyperline, classifications, pre-processing of the data, training the machine with the sample datasets which are collected from different regions in which we have structural and semi-structural data. We will dive into deep of machine learning and data mining classification algorithms to find or predict something novel about the accident occurrences over the globe. We majorly concentrate on two classification algorithms to minify the research and task and they are very basic and important classification algorithms. SVM (Support vector machine), CNB Classifier. This discussion will be quite interesting with WEKA tool for CNB classifier, Bag of Words Identification, Word Count and Frequency Calculation.