
Performance Enhancement of MIMO-OFDM using Redundant Residue Number System
Author(s) -
Mohamed Youssef,
A. E. Emam,
M. Abd Elghany
Publication year - 2018
Publication title -
international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.277
H-Index - 22
ISSN - 2088-8708
DOI - 10.11591/ijece.v8i5.pp3902-3912
Subject(s) - computer science , orthogonal frequency division multiplexing , bit error rate , low density parity check code , transmitter , mimo , error detection and correction , mimo ofdm , forward error correction , electronic engineering , coding (social sciences) , communications system , multipath propagation , channel (broadcasting) , real time computing , decoding methods , algorithm , telecommunications , mathematics , engineering , statistics
Telecommunication industry requires high capacity networks with high data rates which are achieved through utilization of Multiple-Input-Multiple-Output (MIMO) communication along with Orthogonal Frequency Division Multiplexing (OFDM) system. Still, the communication channel suffers from noise, interference or distortion due to hardware design limitations, and channel environment, and to combat these challenges, and achieve enhanced performance; various error control techniques are implemented to enable the receiver to detect any possible received errors and correct it and thus; for a certain transmitted signal power the system would have lower Bit Error Rate (BER). The provided research focuses on Redundant Residue Number System (RRNS) coding as a Forward Error Correction (FEC) scheme that improves the performance of MIMO-OFDM based wireless communications in comparison with current methods as Low-Density Parity Check (LDPC) coders at the transmitter side or equalizers at receiver side. The Bit Error Rate (BER) performance over the system was measured using MATLAB tool for different simulated channel conditions, including the effect of signal amplitude reduction and multipath delay spreading. Simulation results had shown that RRNS coding scheme provides an enhancement in system performance over conventional error detection and correction coding schemes by utilizing the distinct features of Residue Number System (RNS).