z-logo
open-access-imgOpen Access
Conceptual Sentiment Analysis Model
Author(s) -
Kranti Ghag,
Ketan Shah
Publication year - 2018
Publication title -
international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.277
H-Index - 22
ISSN - 2088-8708
DOI - 10.11591/ijece.v8i4.pp2358-2366
Subject(s) - computer science , sentiment analysis , artificial intelligence , phrase , natural language processing , preprocessor , tf–idf , term (time) , focus (optics) , physics , quantum mechanics , optics
Bag-of-words approach is popularly used for Sentiment analysis. It maps the terms in the reviews to term-document vectors and thus disrupts the syntactic structure of sentences in the reviews. Association among the terms or the semantic structure of sentences is also not preserved. This research work focuses on classifying the sentiments by considering the syntactic and semantic structure of the sentences in the review. To improve accuracy, sentiment classifiers based on relative frequency, average frequency and term frequency inverse document frequency were proposed. To handle terms with apostrophe, preprocessing techniques were extended. To focus on opinionated contents, subjectivity extraction was performed at phrase level. Experiments were performed on Pang & Lees, Kaggle’s and UCI’s dataset. Classifiers were also evaluated on the UCI’s Product and Restaurant dataset. Sentiment Classification accuracy improved from 67.9% for a comparable term weighing technique, DeltaTFIDF, up to 77.2% for proposed classifiers. Inception of the proposed concept based approach, subjectivity extraction and extensions to preprocessing techniques, improved the accuracy to 93.9%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here