z-logo
open-access-imgOpen Access
Performance Enhancement of Multicore Architecture
Author(s) -
Medhat Awadalla,
H. G. Konsowa
Publication year - 2015
Publication title -
international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.277
H-Index - 22
ISSN - 2088-8708
DOI - 10.11591/ijece.v5i4.pp669-684
Subject(s) - fetch , computer science , multi core processor , thread (computing) , parallel computing , architecture , computer architecture , embedded system , operating system , art , visual arts , geology , oceanography
Multicore processors integrate several cores on a single chip. The fixed architecture of multicore platforms often fails to accommodate the inherent diverse requirements of different applications. The permanent need to enhance the performance of multicore architecture motivates the development of a dynamic architecture. To address this issue, this paper presents new algorithms for thread selection in fetch stage. Moreover, this paper presents three new fetch stage policies, EACH_LOOP_FETCH, INC-FETCH, and WZ-FETCH, based on Ordinary Least Square (OLS) regression statistic method. These new fetch policies differ on thread selection time which is represented by instructions’ count and window size. Furthermore, the simulation multicore tool, , is adapted to cope with multicore processor dynamic design by adding a dynamic feature in the policy of thread selection in fetch stage. SPLASH2, parallel scientific workloads, has been used to validate the proposed adaptation for multi2sim. Intensive simulated experiments have been conducted and the obtained results show that remarkable performance enhancements have been achieved in terms of execution time and number of instructions per second produces less broadcast operations compared to the typical algorithm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here