
Towards smart modeling of mechanical properties of a bio composite based on a machine learning
Author(s) -
Aziz Moumen,
Abdelghani Lakhdar,
Zineb Laabid,
Khalifa Mansouri
Publication year - 2022
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v12i3.pp3138-3145
Subject(s) - computer science , machine learning , artificial intelligence , artificial neural network , predictive modelling , set (abstract data type) , composite number , computational model , comprehension , algorithm , programming language
The main interest in many research problems in polymer bio composites and machine learning (ML) is the development of predictive models to one or several variables of interest by the use of suitable independent inputs or variables. Nevertheless, these fields have generally adopted several approaches, while bio composite behavior modeling is usually based on phenomenological theories and physical models. These latter are more robust and precise, but they are generally under the restricted predictive ability due to the particular set of conditions. On the other hand, Machine learning models can be highly efficient in the modeling phase by allowing the management of high and massive dimensional sets of data to predict the best behavior of bio composites. In this situation, biomaterial scientists would like to benefit from the comprehension and implementation of the powerful ML models to characterize or predict the bio composites. In this study, we implement a smart methodology employing supervised neural network models to predict the bio composites properties presenting more significant environmental and economic advantages than composites reinforced by synthetic fibers.