z-logo
open-access-imgOpen Access
Performance enhancement of maximum ratio transmission in 5G system with multi-user multiple-input multiple-output
Author(s) -
Sarmad K. Ibrahim,
Saif A. Abdulhussien
Publication year - 2022
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v12i2.pp1650-1658
Subject(s) - precoding , orthogonal frequency division multiplexing , computer science , bit error rate , throughput , mimo , transmission (telecommunications) , mimo ofdm , telecommunications link , channel state information , channel (broadcasting) , multiplexing , electronic engineering , telecommunications , wireless , engineering
The downlink multi-user precoding of the multiple-input multiple-output (MIMO) method includes optimal channel state information at the base station and a variety of linear precoding (LP) schemes. Maximum ratio transmission (MRT) is among the common precoding schemes but does not provide good performance with massive MIMO, such as high bit error rate (BER) and low throughput. The orthogonal frequency division multiplexing (OFDM) and precoding schemes used in 5G have a flaw in high-speed environments. Given that the Doppler effect induces frequency changes, orthogonality between OFDM subcarriers is disrupted and their throughput output is decreased and BER is decreased. This study focuses on solving this problem by improving the performance of a 5G system with MRT, specifically by using a new design that includes weighted overlap and add (WOLA) with MRT. The current research also compares the standard system MRT with OFDM with the proposed design (WOLA-MRT) to find the best performance on throughput and BER. Improved system results show outstanding performance enhancement over a standard system, and numerous improvements with massive MIMO, such as best BER and throughput. Its approximately 60% more throughput than the traditional systems. Lastly, the proposed system improves BER by approximately 2% compared with the traditional system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here