
Study and analysis of motion artifacts for ambulatory electroencephalography
Author(s) -
Asma Islam,
Eshrat Jahan Esha,
Shamsuddin Ahmed,
Md. Kafiul Islam
Publication year - 2022
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v12i2.pp1520-1529
Subject(s) - headset , electroencephalography , computer science , artificial intelligence , motion (physics) , pattern recognition (psychology) , artifact (error) , computer vision , speech recognition , psychology , telecommunications , psychiatry
Motion artifacts contribute complexity in acquiring clean electroencephalography (EEG) data. It is one of the major challenges for ambulatory EEG. The performance of mobile health monitoring, neurological disorders diagnosis and surgeries can be significantly improved by reducing the motion artifacts. Although different papers have proposed various novel approaches for removing motion artifacts, the datasets used to validate those algorithms are questionable. In this paper, a unique EEG dataset was presented where ten different activities were performed. No such previous EEG recordings using EMOTIV EEG headset are available in research history that explicitly mentioned and considered a number of daily activities that induced motion artifacts in EEG recordings. Quantitative study shows that in comparison to correlation coefficient, the coherence analysis depicted a better similarity measure between motion artifacts and motion sensor data. Motion artifacts were characterized with very low frequency which overlapped with the Delta rhythm of the EEG. Also, a general wavelet transform based approach was presented to remove motion artifacts. Further experiment and analysis with more similarity metrics and longer recording duration for each activity is required to finalize the characteristics of motion artifacts and henceforth reliably identify and subsequently remove the motion artifacts in the contaminated EEG recordings.