z-logo
open-access-imgOpen Access
Performance of symmetric and asymmetric links in wireless networks
Author(s) -
Yaser Khamayseh,
Rabiah Al-qudah
Publication year - 2022
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v12i1.pp605-619
Subject(s) - computer science , computer network , wireless network , wireless , network packet , dual (grammatical number) , bandwidth (computing) , radio resource management , distributed computing , telecommunications , art , literature
Wireless networks are designed to provide the enabling infrastructure for emerging technological advancements. The main characteristics of wireless networks are: Mobility, power constraints, high packet loss, and lower bandwidth. Nodes’ mobility is a crucial consideration for wireless networks, as nodes are moving all the time, and this may result in loss of connectivity in the network. The goal of this work is to explore the effect of replacing the generally held assumption of symmetric radii for wireless networks with asymmetric radii. This replacement may have a direct impact on the connectivity, throughput, and collision avoidance mechanism of mobile networks. The proposed replacement may also impact other mobile protocol’s functionality. In this work, we are mainly concerned with building and maintaining fully connected wireless network with the asymmetric assumption. For this extent, we propose to study the effect of the asymmetric links assumption on the network performance using extensive simulation experiments. Extensive simulation experiments were performed to measure the impact of these parameters. Finally, a resource allocation scheme for wireless networks is proposed for the dual rate scenario. The performance of the proposed framework is evaluated using simulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here