z-logo
open-access-imgOpen Access
Mitigation of packet loss with end-to-end delay in wireless body area network applications
Author(s) -
Suha Sahib Oleiwi,
Ghassan N. Mohammed,
Israa Al_Barazanchi
Publication year - 2022
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v12i1.pp460-470
Subject(s) - computer network , computer science , network packet , end to end delay , packet loss , body area network , end to end principle , transmission delay , routing protocol , wireless sensor network
The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here