
The gravitational search algorithm for incorporating TCSC devices into the system for optimum power flow
Author(s) -
Dunya Sh. Wais,
Wafaa S. Majeed
Publication year - 2021
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v11i6.pp4678-4688
Subject(s) - thyristor , computer science , electric power system , installation , ac power , mathematical optimization , voltage , power (physics) , span (engineering) , power flow , algorithm , reliability engineering , engineering , mathematics , electrical engineering , physics , quantum mechanics , operating system , civil engineering
This paper proposes a gravitational search algorithm (GSA) to allocate the thyristor-controlled series compensator (TCSC) incorporation with the issue of reactive power management. The aim of using TCSC units in this study is to minimize active and reactive power losses. Reserve beyond the thermal border, enhance the voltage profile and increase transmission-lines flow while continuing the whole generation cost of the system a little increase compared with its single goal base case. The optimal power flow (OPF) described is a consideration for finding the best size and location of the TCSCs devices seeing techno-economic subjects for minimizing fuel cost of generation units and the costs of installing TCSCs devices. The GSA algorithm's high ability in solving the proposed multi-objective problem is tested on two 9 and 30 bus test systems. For each test system, four case studies are considered to represent both normal and emergency operating conditions. The proposed GSA method's simulation results show that GSA offers a practical and robust high-quality solution for the problem and improves system performance.