
An algorithm for characterizing skin moles using image processing and machine learning
Author(s) -
Zaid Sanchez,
Alicia Alva Mantari,
Mirko Zimic,
Christian del Carpio
Publication year - 2021
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v11i4.pp3539-3550
Subject(s) - skin cancer , support vector machine , artificial intelligence , computer science , naive bayes classifier , algorithm , melanoma , feature (linguistics) , melanin , random forest , machine learning , cancer , biology , linguistics , philosophy , genetics
Melanoma, the most serious type of skin cancer, forms in cells (melanocytes) that produce melanin, the pigment that gives color to the skin. There are low-income regions that lack specialized dermatologists, causing skin cancer to be diagnosed in advanced stages. In Peru, in high Andean communities with low resources, the problem is aggravated by the high incidence of ultraviolet radiation and lack of medical resources to make the diagnosis. Normally, mole images are obtained from dermatoscopes. The present work seeks to use mole images obtained from smartphones to make the classification of them as suspected or not suspected of being melanoma, by means of a feature extraction algorithm. The first step is to make color and lighting corrections. After this, the image is segmented using the K-Means algorithm, and we obtain the areas of the mole and skin. With the segmented mole we proceed to extract the main visual characteristics and then use classification algorithms such as support vector machine (SVM), random forest and naïve bayes, which obtained an accuracy of 0.9473, 0.7368 and 0.6842, respectively. These results show that it is possible to use images obtained from smartphones to develop a classification algorithm with 94.73% accuracy to detect melanoma in skin moles.