
A systematic review on sequence-to-sequence learning with neural network and its models
Author(s) -
Hana Yousuf,
Michael Lahzi,
Said A. Salloum,
Khaled Shaalan
Publication year - 2021
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v11i3.pp2315-2326
Subject(s) - connectionism , sequence (biology) , computer science , artificial neural network , artificial intelligence , recurrent neural network , sequence learning , machine learning , deep learning , information retrieval , data science , biology , genetics
We develop a precise writing survey on sequence-to-sequence learning with neural network and its models. The primary aim of this report is to enhance the knowledge of the sequence-to-sequence neural network and to locate the best way to deal with executing it. Three models are mostly used in sequence-to-sequence neural network applications, namely: recurrent neural networks (RNN), connectionist temporal classification (CTC), and attention model. The evidence we adopted in conducting this survey included utilizing the examination inquiries or research questions to determine keywords, which were used to search for bits of peer-reviewed papers, articles, or books at scholastic directories. Through introductory hunts, 790 papers, and scholarly works were found, and with the assistance of choice criteria and PRISMA methodology, the number of papers reviewed decreased to 16. Every one of the 16 articles was categorized by their contribution to each examination question, and they were broken down. At last, the examination papers experienced a quality appraisal where the subsequent range was from 83.3% to 100%. The proposed systematic review enabled us to collect, evaluate, analyze, and explore different approaches of implementing sequence-to-sequence neural network models and pointed out the most common use in machine learning. We followed a methodology that shows the potential of applying these models to real-world applications.