
Broadband microstrip patch antenna at 28 GHz for 5G wireless applications
Author(s) -
Kinde Anlay Fante,
Mulugeta Tegegn Gemeda
Publication year - 2021
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v11i3.pp2238-2244
Subject(s) - return loss , microstrip antenna , broadband , radiation pattern , antenna efficiency , computer science , dissipation factor , bandwidth (computing) , microstrip , telecommunications , wireless , patch antenna , antenna (radio) , optics , physics , acoustics , optoelectronics , dielectric
In this paper, a 28 GHz broadband microstrip patch antenna (MSPA) for 5G wireless applications is presented. The Rogers RT/Duroid5880 substrate material, with a dielectric constant of 2.2, the thickness of 0.3451 mm, and loss tangent of 0.0009, is used for the studied antenna to operate at 28 GHz center frequency. The proposed design of antenna is simulated by using CST studio suite. The simulation results highlight that the studied antenna has a return loss of -54.49 dB, a bandwidth of 1.062 GHz, a gain of 7.554 dBi. Besides, radiation efficiency and the sidelobe level of the proposed MSPA are 98% and 18.4 dB, respectively. As compared to previous MSPA designs reported in the recent scientific literature, the proposed rectangular MSPA has achieved significantly improved performance in terms of the bandwidth, beam-gain, return loss, sidelobe level, and radiation efficiency. Hence, it is a potential contender antenna type for emerging 5G wireless communication applications.