Open Access
A latency-aware max-min algorithm for resource allocation in cloud
Author(s) -
Kashish Ara Shakil,
Mansaf Alam,
Samiya Khan
Publication year - 2021
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v11i1.pp671-685
Subject(s) - cloud computing , computer science , quality of service , resource allocation , distributed computing , latency (audio) , analytic hierarchy process , flexibility (engineering) , computer network , operations research , operating system , engineering , telecommunications , statistics , mathematics
Cloud computing is an emerging distributed computing paradigm. However, it requires certain initiatives that need to be tailored for the cloud environment such as the provision of an on-the-fly mechanism for providing resource availability based on the rapidly changing demands of the customers. Although, resource allocation is an important problem and has been widely studied, there are certain criteria that need to be considered. These criteria include meeting user’s quality of service (QoS) requirements. High QoS can be guaranteed only if resources are allocated in an optimal manner. This paper proposes a latency-aware max-min algorithm (LAM) for allocation of resources in cloud infrastructures. The proposed algorithm was designed to address challenges associated with resource allocation such as variations in user demands and on-demand access to unlimited resources. It is capable of allocating resources in a cloud-based environment with the target of enhancing infrastructure-level performance and maximization of profits with the optimum allocation of resources. A priority value is also associated with each user, which is calculated by analytic hierarchy process (AHP). The results validate the superiority for LAM due to better performance in comparison to other state-of-the-art algorithms with flexibility in resource allocation for fluctuating resource demand patterns.