
Social-sine cosine algorithm-based cross layer resource allocation in wireless network
Author(s) -
T. Lakshmi Praveena,
G S Nagaraja
Publication year - 2021
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijece.v11i1.pp458-470
Subject(s) - computer science , resource allocation , throughput , max min fairness , physical layer , wireless , wireless network , resource management (computing) , sine , trigonometric functions , computer network , resource (disambiguation) , fairness measure , algorithm , distributed computing , mathematical optimization , mathematics , telecommunications , geometry
Cross layer resource allocation in the wireless networks is approached traditionally either by communications networks or information theory. The major issue in networking is the allocation of limited resources from the users of network. In traditional layered network, the resource are allocated at medium access control (MAC) and the network layers uses the communication links in bit pipes for delivering the data at fixed rate with the occasional random errors. Hence, this paper presents the cross-layer resource allocation in wireless network based on the proposed social-sine cosine algorithm (SSCA). The proposed SSCA is designed by integrating social ski driver (SSD) and sine cosine algorithm (SCA). Also, for further refining the resource allocation scheme, the proposed SSCA uses the fitness based on energy and fairness in which max-min, hard-fairness, proportional fairness, mixed-bias and the maximum throughput is considered. Based on energy and fairness, the cross-layer optimization entity makes the decision on resource allocation to mitigate the sum rate of network. The performance of resource allocation based on proposed model is evaluated based on energy, throughput, and the fairness. The developed model achieves the maximal energy of 258213, maximal throughput of 3.703, and the maximal fairness of 0.868, respectively.