
Advanced location-based IPv6 address for the node of wireless sensor network
Author(s) -
Mohammed Nazar Hussein,
Raed Abdullah,
Thomas O’ Daniel,
Maythem K. Abbas
Publication year - 2020
Publication title -
international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.277
H-Index - 22
ISSN - 2088-8708
DOI - 10.11591/ijece.v10i3.pp2474-2483
Subject(s) - wireless sensor network , computer science , node (physics) , global positioning system , ipv6 address , computer network , ipv6 , location data , hybrid positioning system , real time computing , key distribution in wireless sensor networks , wireless network , wireless , positioning system , telecommunications , the internet , engineering , structural engineering , world wide web
Fields such as military, transportation applications, human services, smart cities and many others utilized Wireless Sensor Network (WSN) in their operations. Despite its beneficial use, occurrence of obstacles is inevitable. From the sensed data, the randomly nodes distribution will produce multiple benefits from self-configuration and regular positioning reporting. Lately, localization and tracking issues have received a remarkable attention in WSNs, as accomplishing high localization accuracy when low energy is used, is much needed. In this paper, a new method and standards-compliant scheme according to the incorporation of GPS location data into the IPv6 address of WSN nodes is suggested. The suggestion is likewise others which depends on ground-truth anchor nodes, with a difference of using the network address to deliver the information. The findings from the results revealed that perfect GPS coordinates can be conducted in the IPv6 address as well as with the transmission radius of the node, and the information is significantly adequate to predict a node’s location. The location scheme performance is assessed in OMNet++ simulation according to the positioning error and the power metrics used. Moreover, some improvement practices to increase the precision of the node location are suggested.