
Depression prediction using machine learning: a review
Author(s) -
Hanis Diyana Abdul Rahimapandi,
Ruhaila Maskat,
Ramli Musa,
Norizah Ardi
Publication year - 2022
Publication title -
iaes international journal of artificial intelligence
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 7
eISSN - 2252-8938
pISSN - 2089-4872
DOI - 10.11591/ijai.v11.i3.pp1108-1118
Subject(s) - machine learning , artificial intelligence , depression (economics) , computer science , random forest , scale (ratio) , anxiety , geriatric depression scale , rating scale , population , data science , psychology , medicine , psychiatry , depressive symptoms , cartography , developmental psychology , environmental health , economics , macroeconomics , geography