
Deep ensemble learning for skin lesions classification with convolutional neural network
Author(s) -
Renny Amalia Pratiwi,
Siti Nurmaini,
Dian Palupi Rini,
Muhammad Naufal Rachmatullah,
Annisa Darmawahyuni
Publication year - 2021
Publication title -
iaes international journal of artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 2252-8938
pISSN - 2089-4872
DOI - 10.11591/ijai.v10.i3.pp563-570
Subject(s) - convolutional neural network , skin cancer , artificial intelligence , computer science , deep learning , skin lesion , pattern recognition (psychology) , contextual image classification , residual neural network , machine learning , cancer , image (mathematics) , dermatology , medicine
One type of skin cancer that is considered a malignant tumor is melanoma. Such a dangerous disease can cause a lot of death in the world. The early detection of skin lesions becomes an important task in the diagnosis of skin cancer. Recently, a machine learning paradigm emerged known as deep learning (DL) utilized for skin lesions classification. However, in some previous studies by using seven class images diagnostic of skin lesions classification based on a single DL approach with CNNs architecture does not produce a satisfying performance. The DL approach allows the development of a medical image analysis system for improving performance, such as the deep convolutional neural networks (DCNNs) method. In this study, we propose an ensemble learning approach that combines three DCNNs architectures such as Inception V3, Inception ResNet V2 and DenseNet 201 for improving the performance in terms of accuracy, sensitivity, specificity, precision, and F1-score. Seven classes of dermoscopy image categories of skin lesions are utilized with 10015 dermoscopy images from well-known the HAM10000 dataset. The proposed model produces good classification performance with 97.23% accuracy, 90.12% sensitivity, 97.73% specificity, 82.01% precision, and 85.01% F1-Score. This method gives promising results in classifying skin lesions for cancer diagnosis.