z-logo
open-access-imgOpen Access
Boyer Moore string-match framework for a hybrid short message service spam filtering technique
Author(s) -
Arnold Adimabua Ojugo,
David Ademola Oyemade
Publication year - 2021
Publication title -
iaes international journal of artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 2252-8938
pISSN - 2089-4872
DOI - 10.11591/ijai.v10.i3.pp519-527
Subject(s) - computer science , spamming , short message service , artificial intelligence , popularity , machine learning , classifier (uml) , mobile device , computer network , world wide web , the internet , psychology , social psychology
Advances in technology and the proliferation of mobile device have continued to advance the ubiquitous nature of computing alongside their many prowess and improved features it brings as a disruptive technology to aid information sharing amongst many online users. This popularity, usage and adoption ease, mobility, and portability of the mobile smartphone devices have allowed for its acceptability and popularity. Mobile smartphones continue to adopt the use of short messages services accompanied with a scenario for spamming to thrive. Spams are unsolicited message or inappropriate contents. An effective spam filter studies are limited as short-text message service (SMS) are 140bytes, 160-characters, and rippled with abbreviation and slangs that further inhibits the effective training of models. The study proposes a string match algorithm used as deep learning ensemble on a hybrid spam filtering technique to normalize noisy features, expand text and use semantic dictionaries of disambiguation to train underlying learning heuristics and effectively classify SMS into legitimate and spam classes. Study uses a profile hidden Markov network to select and train the network structure and employs the deep neural network as a classifier network structure. Model achieves an accuracy of 97% with an error rate of 1.2%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here