z-logo
open-access-imgOpen Access
Integration of convolutional neural network and extreme gradient boosting for breast cancer detection
Author(s) -
Endang Sugiharti,
Riza Arifudin,
Dian Tri Wiyanti,
Arief Broto Susilo
Publication year - 2022
Publication title -
bulletin of electrical engineering and informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.251
H-Index - 12
ISSN - 2302-9285
DOI - 10.11591/eei.v11i2.3562
Subject(s) - convolutional neural network , computer science , artificial intelligence , python (programming language) , breast cancer , classifier (uml) , boosting (machine learning) , transfer of learning , machine learning , artificial neural network , pattern recognition (psychology) , preprocessor , cancer , medicine , operating system
With the most recent advances in technology, computer programming has reached the capabilities of human brain to decide things for almost all healthcare systems. The implementation of Convolutional Neural Network (CNN) and Extreme Gradient Boosting (XGBoost) is expected to improve the accurateness of breast cancer detection. The aims of this research were to; i) determine the stages of CNN-XGBoost integration in diagnosis of breast cancer and ii) calculate the accuracy of the CNN-XGBoost integration in breast cancer detection. By combining transfer learning and data augmentation, CNN with XGBoost as a classifier was used. After acquiring accuracy results through transfer learning, this reasearch connects the final layer to the XGBoost classifier. Furthermore, the interface design for the evaluation process was established using the Python programming language and the Django platform. The results: i) the stages of CNN-XGBoost integration on histopathology images for breast cancer detection were discovered. ii) Achieved a higher level of accuracy as a result of the CNN-XGBoost integration for breast cancer detection. In conclusion, breast cancer detection was revealed through the integration of CNN-XGBoost through histopathological images. The combination of CNN and XGBoost can enhance the accuracy of breast cancer detection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here