
Explicit kissing scene detection in cartoon using convolutional long short-term memory
Author(s) -
Muhammad Fadzli,
Mohd Fadzil Abu Hassan,
Norazlin Ibrahim
Publication year - 2022
Publication title -
bulletin of electrical engineering and informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.251
H-Index - 12
ISSN - 2302-9285
DOI - 10.11591/eei.v11i1.3542
Subject(s) - computer science , artificial intelligence , term (time) , computer vision , classifier (uml) , frame (networking) , feature (linguistics) , feature extraction , pattern recognition (psychology) , telecommunications , linguistics , philosophy , physics , quantum mechanics
The main concern of this study is due to certain cartoon content consisting of explicit scenes such as kissing, sex, violence. That are somehow not suitable for kids and may contradict to some religions and cultures. There are some reasons the film industry does not expel the kissing scene in a cartoon movie. It is categorized as a romance sequence and love scene. These could be a double-edged weapon that will ruin an individual’s childhood through excessive exposure to explicit content. This paper proposes a deep learning-based classifier to detect the kissing scene in the cartoon by using Darknet-19 for frame-level feature extraction, while the feature aggregation in the temporal domain is using convolutional long short-term memory (conv-LSTM). This paper also has discussed a few steps related to evaluation and analysis regarding the performance of the models. Extensive experiments prove that the proposed system provides excellent results of 96.43% accuracy to detect the kissing scene in the cartoon. Due to high accuracy performance, the model is suitable to be a kissing scene filter feature in a digital video player that may able to decrease the excessive exposure to explicit content for kids.