
E-commerce online review for detecting influencing factors users perception
Author(s) -
Irvan Krisna Arsad,
Djoko Budiyanto Setyohadi,
Paulus Mudjihartono
Publication year - 2021
Publication title -
bulletin of electrical engineering and informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.251
H-Index - 12
ISSN - 2302-9285
DOI - 10.11591/eei.v10i6.3182
Subject(s) - perception , computer science , perspective (graphical) , support vector machine , e commerce , world wide web , user satisfaction , data science , artificial intelligence , human–computer interaction , psychology , neuroscience
To date, online shopping using e-commerce services becomes a trend. The emergence of e-commerce truly helps people to shop more effectively and efficiently. However, there are still some problems encountered in e-commerce, especially from the user perspective. This research aims to explore user review data, particularly on factors that influence user perception of e-commerce applications, classify, and identify potential solutions to finding problems in e-commerce applications. Data is grabbed using web scraping techniques and classified using proper machine learning, i.e., support vector machine (SVM). Text associations and fishbone analysis are performed based on the classified user review data. The results of this study show that the user satisfaction problem can be captured. Furthermore, various services that should be provided as a potential solution to experienced customers' problems or application users' perception problems can be generated. A detailed discussion of these findings is available in this article.