z-logo
open-access-imgOpen Access
Obesity Exacerbates Lupus Activity in Fc Gamma Receptor IIb Deficient Lupus Mice Partly through Saturated Fatty Acid-Induced Gut Barrier Defect and Systemic Inflammation
Author(s) -
Udompornpitak Kanyarat,
Charoensappakit Awirut,
Sae-Khow Kritsanawan,
Bhunyakarnjanarat Thansita,
Dang Cong Phi,
Saisorn Wilasinee,
Visitchanakun Peerapat,
Phuengmaung Pornpimol,
Palaga Tanapat,
Ritprajak Patcharee,
Tungsanga Somkanya,
Leelahavanichkul Asada
Publication year - 2022
Publication title -
journal of innate immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.078
H-Index - 64
eISSN - 1662-8128
pISSN - 1662-811X
DOI - 10.1159/000526206
Subject(s) - research article
The prevalence of obesity is increasing, and the coexistence of obesity and systemic lupus erythematosus (lupus) is possible. A high-fat diet (HFD) was orally administered for 6 months in female 8-week-old Fc gamma receptor IIb deficient (FcgRIIb−/−) lupus or age and gender-matched wild-type (WT) mice. Lupus nephritis (anti-dsDNA, proteinuria, and increased creatinine), gut barrier defect (fluorescein isothiocyanate dextran), serum lipopolysaccharide (LPS), serum interleukin (IL)-6, liver injury (alanine transaminase), organ fibrosis (liver and kidney pathology), spleen apoptosis (activated caspase 3), and aorta thickness (but not weight gain and lipid profiles) were more prominent in HFD-administered FcgRIIb−/− mice than the obese WT, without injury in regular diet-administered mice (both FcgRIIb−/− and WT). In parallel, combined palmitic acid (PA; a saturated fatty acid) with LPS (PA + LPS) induced higher tumor necrotic factor-α, IL-6, and IL-10 in the supernatant, inflammatory genes (inducible nitric oxide synthase and IL-1β), reactive oxygen species (dihydroethidium), and glycolysis with reduced mitochondrial activity (extracellular flux analysis) when compared with the activation by each molecule alone in both FcgRIIb−/− and WT macrophages. However, the alterations of these parameters were more prominent in PA + LPS-administered FcgRIIb−/− than in the WT cells. In conclusion, obesity accelerated inflammation in FcgRIIb−/− mice, partly due to the more potent responses from the loss of inhibitory FcgRIIb against PA + LPS with obesity-induced gut barrier defect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here