z-logo
open-access-imgOpen Access
Methods for Monitoring Risk of Hypoxic Damage in Fetal and Neonatal Brains: A Review
Author(s) -
Liaisan Uzianbaeva,
Yan Yan,
Tanaya Joshi,
Ning Yin,
ChaurDong Hsu,
Edgar HernándezAndrade,
Mohammad Mehrmohammadi
Publication year - 2021
Publication title -
fetal diagnosis and therapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.976
H-Index - 60
eISSN - 1421-9964
pISSN - 1015-3837
DOI - 10.1159/000520987
Subject(s) - medicine , cerebral palsy , fetus , encephalopathy , neonatal encephalopathy , asphyxia , perinatal asphyxia , intensive care medicine , hypoxic ischemic encephalopathy , pregnancy , obstetrics , psychiatry , genetics , biology
Fetal, perinatal, and neonatal asphyxia are vital health issues for the most vulnerable groups in human beings, including fetuses, newborns, and infants. Severe reduction in oxygen and blood supply to the fetal brain can cause hypoxic-ischemic encephalopathy (HIE), leading to long-term neurological disorders, including mental impairment and cerebral palsy. Such neurological disorders are major healthcare concerns. Therefore, there has been a continuous effort to develop clinically useful diagnostic tools for accurately and quantitatively measuring and monitoring blood and oxygen supply to the fetal and neonatal brain to avoid severe consequences of asphyxia HIE and neonatal encephalopathy. Major diagnostic technologies used for this purpose include fetal heart rate monitoring, fetus scalp blood sampling, ultrasound imaging, magnetic resonance imaging, X-ray computed tomography, and nuclear medicine. In addition, given the limitations and shortcomings of traditional diagnostic methods, emerging technologies such as near-infrared spectroscopy and photoacoustic imaging have also been introduced as stand-alone or complementary solutions to address this critical gap in fetal and neonatal care. This review provides a thorough overview of the traditional and emerging technologies for monitoring fetal and neonatal brain oxygenation status and describes their clinical utility, performance, advantages, and disadvantages.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here