New Parameter of the Second Half of the P-Wave, P-Wave Duration, and Atrial Conduction Times Predict Atrial Fibrillation during Electrophysiological Studies
Author(s) -
Carmona Puerta Raimundo,
Lorenzo Martínez Elizabeth,
Rabassa López-Calleja Magda Alina,
Padrón Peña Gustavo,
Castro Torres Yaniel,
Cruz Elizundia Juan Miguel,
Rodríguez González Fernando,
García Vázquez Luis Ángel,
Chávez González Elibet
Publication year - 2021
Publication title -
medical principles and practice
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 45
eISSN - 1423-0151
pISSN - 1011-7571
DOI - 10.1159/000518262
Subject(s) - original paper
Objective: Several P-wave parameters reflect atrial conduction characteristics and have been used to predict atrial fibrillation (AF). The aim of this study was to determine the relationship between maximum P-wave duration (PMax) and new P-wave parameters, with atrial conduction times (CT), and to assess their predictive value of AF during electrophysiological studies (AF-EPS). Subjects and Methods: This was a cross-sectional study in 153 randomly selected patients aged 18–70 years, undergoing EPS. The patients were divided into 2 groups designated as no AF-EPS and AF-EPS, depending on whether AF occurred during EPS or not. Different P-wave parameters and atrial CT were compared for both study groups. Subsequently, the predictive value of the P-wave parameters and the atrial CT for AF-EPS was evaluated. Results: The values of CT, PMax, and maximum Ppeak-Pend interval (Pp-eMax) were significantly higher in patients with AF-EPS. Almost all P-wave parameters were correlated with the left CT. PMax, Pp-eMax, and CT were univariate and multivariate predictors of AF-EPS. The largest ROC area was presented by interatrial CT (0.852; p < 0.001; cutoff value: ≥82.5 ms; sensitivity: 91.1%; specificity: 81.1%). Pp-eMax showed greater sensitivity (79.5%) to discriminate AF-EPS than PMax (72.7%), but the latter had better specificity (60.4% vs. 41.5%). Conclusions: Left atrial CT were directly and significantly correlated with PMax and almost all the parameters of the second half of the P-wave. CT, PMax, and Pp-eMax (new parameter) were good predictors of AF-EPS, although CT did more robustly.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom