Open Access
Variances in Antiviral Memory T-Cell Repertoire of CD45RA- and CD62L-Depleted Lymphocyte Products Reflect the Need of Individual T-Cell Selection Strategies to Reduce the Risk of GvHD while Preserving Antiviral Immunity in Adoptive T-Cell Therapy
Author(s) -
Mangare Caroline,
Tischer-Zimmermann Sabine,
Bonifacius Agnes,
Riese Sebastian B.,
Dragon Anna Christina,
Blasczyk Rainer,
Maecker-Kolhoff Britta,
Eiz-Vesper Britta
Publication year - 2021
Publication title -
transfusion medicine and hemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.971
H-Index - 39
eISSN - 1660-3818
pISSN - 1660-3796
DOI - 10.1159/000516284
Subject(s) - research article
Introduction: Viral infections and reactivations still remain a cause of morbidity and mortality after hematopoietic stem cell transplantation due to immunodeficiency and immunosuppression. Transfer of unmanipulated donor-derived lymphocytes (DLI) represents a promising strategy for improving cellular immunity but carries the risk of graft versus host disease (GvHD). Depleting alloreactive naïve T cells (TN) from DLIs was implemented to reduce the risk of GvHD induction while preserving antiviral memory T-cell activity. Here, we compared two TN depletion strategies via CD45RA and CD62L expression and investigated the presence of antiviral memory T cells against human adenovirus (AdV) and Epstein-Barr virus (EBV) in the depleted fractions in relation to their functional and immunophenotypic characteristics. Methods: T-cell responses against ppEBV_EBNA1, ppEBV_Consensus and ppAdV_Hexon within TN-depleted (CD45RA−/CD62L−) and TN-enriched (CD45RA+/CD62L+) fractions were quantified by interferon-gamma (IFN-γ) ELISpot assay after short- and long-term in vitro stimulation. T-cell frequencies and immunophenotypic composition were assessed in all fractions by flow cytometry. Moreover, alloimmune T-cell responses were evaluated by mixed lymphocyte reaction. Results: According to differences in the phenotype composition, antigen-specific T-cell responses in CD45RA− fraction were up to 2 times higher than those in the CD62L− fraction, with the highest increase (up to 4-fold) observed after 7 days for ppEBV_EBNA1-specific T cells. The CD4+ effector memory T cells (TEM) were mainly responsible for EBV_EBNA1- and AdV_Hexon-specific T-cell responses, whereas the main functionally active T cells against ppEBV_Consensus were CD8+ central memory T cells (TCM) and TEM. Moreover, comparison of both depletion strategies indicated that alloreactivity in CD45RA− was lower than that in CD62L− fraction. Conclusion: Taken together, our results indicate that CD45RA depletion is a more suitable strategy for generating TN-depleted products consisting of memory T cells against ppEBV_EBNA1 and ppAdV_Hexon than CD62L in terms of depletion effectiveness, T-cell functionality and alloreactivity. To maximally exploit the beneficial effects mediated by antiviral memory T cells in TN-depleted products, depletion methods should be selected individually according to phenotype composition and CD4/CD8 antigen restriction. TN-depleted DLIs may improve the clinical outcome in terms of infections, GvHD, and disease relapse if selection of pathogen-specific donor T cells is not available.