Open Access
Gleevec and Rapamycin Synergistically Reduce Cell Viability and Inhibit Proliferation and Angiogenic Function of Mouse Bone Marrow-Derived Endothelial Progenitor Cells
Author(s) -
Ling Chen,
Limeng Dai,
Dewen Yan,
Boya Zhou,
Wei Zheng,
Jia Yin,
Tao Zhou,
Zehua Liu,
Jianxin Deng,
Rehua Wang,
Xiaorong Ding,
Junhui Chen
Publication year - 2021
Publication title -
journal of vascular research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.58
H-Index - 74
eISSN - 1423-0135
pISSN - 1018-1172
DOI - 10.1159/000515816
Subject(s) - endothelial progenitor cell , progenitor cell , viability assay , cell growth , angiogenesis , bone marrow , apoptosis , biology , microbiology and biotechnology , endothelial stem cell , chemistry , cancer research , stem cell , immunology , in vitro , biochemistry
Objective: This study investigates the synergistic effects of Gleevec (imatinib) and rapamycin on the proliferative and angiogenic properties of mouse bone marrow-derived endothelial progenitor cells (EPCs). Materials and Methods: EPCs were isolated from mouse bone marrow and treated with different concentrations of Gleevec or rapamycin individually or in combination. The cell viability and proliferation were examined using the MTT assay. An analysis of cell cycle and apoptosis was performed using flow cytometry. Formation of capillary-like tubes was examined in vitro, and the protein expression of cell differentiation markers was determined using Western blot analysis. Results: Gleevec significantly reduced cell viability, cell proliferation, and induced cell apoptosis in EPCs. Rapamycin had similar effects on EPCs, but it did not induce cell apoptosis. The combination of Gleevec and rapamycin reduced the cell proliferation but increased cell apoptosis. Although rapamycin had no demonstratable effect on tube formation, the combined therapy of Gleevec and rapamycin significantly reduced tube formation when compared with Gleevec alone. Mechanistically, Gleevec, but not rapamycin, induced a significant elevation in caspase-3 activity in EPCs, and it attenuated the expression of the endothelial protein marker platelet-derived growth factor receptor α. Functionally, rapamycin, but not Gleevec, significantly enhanced the expression of endothelial differentiation marker proteins, while attenuating the expression of mammalian target of rapamycin signaling-related proteins. Conclusions: Gleevec and rapamycin synergistically suppress cell proliferation and tube formation of EPCs by inducing cell apoptosis and endothelial differentiation. Mechanistically, it is likely that rapamycin enhances the proapoptotic and antiangiogenic effects of Gleevec by promoting the endothelial differentiation of EPCs. Given that EPCs are involved in the pathogenesis of some cardiovascular diseases and critical to angiogenesis, pharmacological inhibition of EPC proliferation by combined Gleevec and rapamycin therapy may be a promising approach for suppressing cardiovascular disease pathologies associated with angiogenesis.