Open Access
Can Xenobiotics Alter the Sex Ratio of Crocodilians in the Wild?
Author(s) -
Satomi Kohno
Publication year - 2021
Publication title -
sexual development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.528
H-Index - 44
eISSN - 1661-5433
pISSN - 1661-5425
DOI - 10.1159/000515724
Subject(s) - xenobiotic , biology , estrogen , estrogen receptor , vitellogenin , medicine , endocrinology , ovary , dieldrin , reproductive system , ecology , genetics , pesticide , gene , biochemistry , cancer , breast cancer , enzyme
All crocodilians exhibit temperature-dependent sex determination without sex chromosomes. This temperature dependency can be overridden by exposure to estrogen via estrogen receptor 1. Thus, the sex ratio of crocodilian species is vulnerable to estrogenic xenobiotics. Multiple investigations of the mechanism and effects of xenobiotics in crocodilian species have been conducted since the early 1990s. This review focuses on the impact of xenobiotics on sex determination rather than gonadal functions in crocodilians. The thermosensitive and estrogen-sensitive periods that commit the bipotential gonad to develop as an ovary end by stages 24.5 and 25.3, respectively. In contrast, it is ambiguous when the estrogen-sensitive stage begins for ovarian development, although the thermosensitive period for ovarian development initiates around developmental stage 15 at an extreme female-producing temperature of 30°C. To accurately assess the effect of xenoestrogens on sex ratio in crocodilians, it is critical to collect eggs before the sex-determining period and to incubate them under precisely controlled temperatures. A well-studied system of xenobiotic effects on crocodilians is Lake Apopka (FL, USA), an EPA superfund clean-up site heavily contaminated with Dieldrin, Endrin, and p,p' -DDE. The sum of estimated estrogenicity of xenobiotics measured in Lake Apopka was insufficient to activate the estrogen receptor 1 of Alligator mississippiensis , which is an essential receptor to induce ovarian development. Although juvenile A. mississippiensis showed gonadal alterations in sex hormone production and histology, the environmentally relevant concentration of xenobiotics in Lake Apopka was unlikely to alter the sex ratio of A. mississippiensis. Experimental exposure to xenobiotics such as 17α-ethynylestradiol, p,p' -dichlorodiphenyldichloroethylene, and 2,3,7,8-tetrachlorodibenzodioxin at environmentally relevant concentrations in ovo induced more female offspring in A. mississippiensis as compared with the control group. Bisphenol-A, atrazine, 2,4-dichlorophenoxyacetic acid, endosulfan, and Corexit did not alter the sex ratio of A. mississippiensis or Caiman latirostris under the tested conditions. Egg-incubation temperature has pronounced effects on estrogen sensitivity in crocodilian sex determination. Therefore, crocodilians are vulnerable to xenobiotic contamination and climate change in the wild. It is vital to further investigate the detailed mechanism and effects of environmental xenobiotics in crocodilian sex determination to mitigate their effect on sex ratio and conserve this ancient lineage.