z-logo
open-access-imgOpen Access
Tumor-Infiltrating T Cells Concurrently Overexpress CD200R with Immune Checkpoints PD-1, CTLA-4, and TIM-3 in Non-Small-Cell Lung Cancer
Author(s) -
Yinghan Su,
Shota Yamazaki,
Ryo Morisue,
Jun Suzuki,
Toshiaki Yoshikawa,
Tetsuya Nakatsura,
Masahiro Tsuboi,
Atsushi Ochiai,
Genichiro Ishii
Publication year - 2020
Publication title -
pathobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.941
H-Index - 53
eISSN - 1423-0291
pISSN - 1015-2008
DOI - 10.1159/000511557
Subject(s) - cytotoxic t cell , immune system , cancer research , antibody , t cell , biology , ctla 4 , immune checkpoint , lymphocyte , immunology , immunotherapy , in vitro , biochemistry
CD200R has been reported to be the receptor for the immune checkpoint molecule CD200 and can transduce immune-suppressive signals. In this study, we mainly focused on the expression level of CD200R in T cells in pulmonary artery (PA) blood and non-small-cell lung cancer (NSCLC) tumor tissue. Methods: Immune cells were isolated from dissected tumor samples and PA blood of NSCLC patients and analyzed with multiparameter flow cytometry. The co-expression of CD200R with other immune checkpoints, including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), was also investigated. Results: CD200R expression was observed on the surface of approximately 75% of T cells among tumor-infiltrating leukocytes (TILs). Compared to T cells extracted from TILs, only 55% of T cells extracted from PA blood exhibited CD200R expression. Moreover, with higher expression of CD200R, the expression of other immune checkpoints, including PD-1, CTLA-4, and TIM-3, was also increased in tumor-infiltrating T cells compared to T cells in PA blood. Conclusions: Our results showed that those tumors were dominated by T cells expressing CD200R together with other checkpoints, which suggests a phenotypic change after T cell infiltration into the tumor, such as T cell exhaustion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom