
Double-Stranded RNA Dependent Kinase R Regulates Antibacterial Immunity in Sepsis
Author(s) -
Yang Yanliang,
Xie Lingli,
Zhong Yanjun,
Zhong Xiaoli,
Meng Ran,
Xue Qianqian,
Liang Fang,
Zhao Kai,
Tang Yiting
Publication year - 2020
Publication title -
journal of innate immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.078
H-Index - 64
eISSN - 1662-8128
pISSN - 1662-811X
DOI - 10.1159/000507932
Subject(s) - research article
Double-stranded RNA dependent kinase R (PKR) is originally identified as an intracellular sensor of viral infection, but its role in bacterial infection remains largely unknown. Here we report that PKR was an important regulator of antibacterial immunity in sepsis. Genetic deletion of PKR or pharmacological inhibition of its kinase activity markedly increased bacterial loads, organ injury, and mortality in polymicrobial infection induced by cecal ligation and puncture (CLP). In contrast, PKR deficiency or inhibition did not affect bacterial loads, organ injury, or mortality when mice were systemically challenged with Escherichia coli , an abundant microbe in the gastrointestinal tract. PKR deficiency or inhibition markedly decreased the release of interleukin (IL)-1β after CLP. Defect in IL-1 signaling phenocopied PKR deficiency or inhibition in CLP-induced bacterial sepsis. Taken together, these findings identified a critical role of the PKR signaling pathway in antibacterial immunity.