z-logo
open-access-imgOpen Access
L-Tyr-Induced Phosphorylation of Tyrosine Hydroxylase at Ser 40 : An Alternative Route for Dopamine Synthesis and Modulation of Na + /K + -ATPase in Kidney Cells
Author(s) -
Taveira-da-Silva Rosilane,
da Silva Sampaio Luzia,
Vieyra Adalberto,
Einicker-Lamas Marcelo
Publication year - 2019
Publication title -
kidney and blood pressure research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 51
eISSN - 1423-0143
pISSN - 1420-4096
DOI - 10.1159/000497806
Subject(s) - research article
Background/Aims: Dopamine (DA) is a natriuretic hormone that inhibits renal sodium reabsorption, being Angiotensin II (Ang II) its powerful counterpart. These two systems work together to maintain sodium homeostasis and consequently, the blood pressure (BP) within normal limits. We hypothesized that L-tyrosine (L-tyr) or L-dihydroxyphenylalanine (L-dopa) could inhibit the Na+/K+-ATPase activity. We also evaluated whether L-tyr treatment modulates Tyrosine Hydroxylase (TH). Methods: Experiments involved cultured LLCPK1 cells treated with L-tyr or L-dopa for 30 minutes a 37°C. In experiments on the effect of Dopa Descarboxylase (DDC) inhibition, cells were pre incubated for 15 minutes with 3-Hydroxybenzylhydrazine dihydrochloride (HBH), and them L-dopa was added for 30 minutes. Na+/K+-ATPase activity was quantified colorimetrically. We used immunoblotting and immunocytochemistry to identify the enzymes TH, DDC and the dopamine receptor D1R in LLCPK1 cells. TH activity was accessed by immunoblotting (increase in the phosphorylation). TH and DDC activities were also evaluated by the modulation of the Na+/K+-ATPase activity, which can be ascribed to the synthesis of dopamine. Results: LLCPK1 cells express the required machinery for DA synthesis: the enzymes TH, and (DDC) as well as its receptor D1R, were detected in control steady state cells. Cells treated with L-tyr or L-dopa showed an inhibition of the basolateral Na+/K+-ATPase activity. We can assume that DA formed in the cytoplasm from L-tyr or L-dopa led to inhibition of the Na+/K+-ATPase activity compared to control. L-tyr treatment increases TH phosphorylation at Ser40 by 100%. HBH, a specific DDC inhibitor; BCH, a LAT2 inhibitor; and Sch 23397, a specific D1R antagonist, totally suppressed the inhibition of Na+/K+-ATPase activity due to L-dopa or L-tyr administration, as indicated in the figures. Conclusion: The results indicate that DA formed mainly from luminal L-tyr or L-dopa uptake by LAT2, can inhibit the Na+/K+-ATPase. In addition, our results showed for the very first time that TH activity is also significantly increased when the cells were exposed to L-tyr.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here