z-logo
open-access-imgOpen Access
Garcinia Multiflora Inhibits FPR1-Mediated Neutrophil Activation and Protects Against Acute Lung Injury
Author(s) -
Yung Fong Tsai,
Shung Haur Yang,
WenYi Chang,
Jih Jung Chen,
Chun Yu Chen,
Shwu Fen Chang,
TsongLong Hwang
Publication year - 2018
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000495970
Subject(s) - superoxide , degranulation , reactive oxygen species , formyl peptide receptor , elastase , pharmacology , signal transduction , chemotaxis , n formylmethionine leucyl phenylalanine , chemistry , microbiology and biotechnology , receptor , biochemistry , biology , enzyme
Background/Aims: Formyl peptide receptors (FPRs) recognize different endogenous and exogenous molecular stimuli and mediate neutrophil activation. Dysregulation of excessive neutrophil activation and the resulting immune responses can induce acute lung injury (ALI) in the host. Accordingly, one promising approach to the treatment of neutrophil-dominated inflammatory diseases involves therapeutic FPR1 inhibition. Methods: We extracted a potent FPR1 antagonist from Garcinia multiflora Champ. (GMC). The inhibitory effects of GMC on superoxide anion release and elastase degranulation from activated human neutrophils were determined with spectrophotometric analysis. Reactive oxygen species (ROS) production and the FPR1 binding ability of neutrophils were assayed by flow cytometry. Signaling transduction mediated by GMC in response to chemoattractants was assessed with a calcium influx assay and western blotting. A lipopolysaccharide (LPS)-induced ALI mouse model was used to determine the therapeutic effects of GMC in vivo. Results: GMC significantly reduced superoxide anion release, the reactive oxidants derived therefrom, and elastase degranulation mediated through selective, competitive FPR1 blocking in N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF)-stimulated human neutrophils. In cell-free systems, GMC was unable to scavenge superoxide anions or suppress elastase activity. GMC produced a right shift in fMLF-activated concentration-response curves and was confirmed to be a competitive FPR1 antagonist. GMC binds to FPR1 not only in neutrophils, but also FPR1 in neutrophil-like THP-1 and hFPR1-transfected HEK293 cells. Furthermore, the mobilization of calcium and phosphorylation of mitogen-activated protein kinases and Akt, which are involved in FPR1-mediated downstream signaling, was competitively blocked by GMC. In an in vivo study, GMC significantly reduced pulmonary edema, neutrophil infiltration, and alveolar damage in LPS-induced ALI mice. Conclusion: Our findings demonstrate that GMC is a natural competitive FPR1 inhibitor, which makes it a possible anti-inflammatory treatment option for patients critically inflicted with FPR1-mediated neutrophilic lung damage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here