z-logo
open-access-imgOpen Access
K6PC-5 Activates SphK1-Nrf2 Signaling to Protect Neuronal Cells from Oxygen Glucose Deprivation/Re-Oxygenation
Author(s) -
Hua Liu,
Zhi-qing Zhang,
Min Xu,
Rong Xu,
Zhichun Wang,
Guangfu Di
Publication year - 2018
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000495716
Subject(s) - microbiology and biotechnology , small hairpin rna , biology , sphingosine kinase 1 , neuroprotection , sh sy5y , gene knockdown , chemistry , sphingosine , cell culture , sphingosine 1 phosphate , apoptosis , pharmacology , biochemistry , receptor , neuroblastoma , genetics
Background/Aims: New strategies are required to combat neuronal ischemia-reperfusion injuries. K6PC-5 is a novel sphingosine kinase 1 (SphK1) activator whose potential activity in neuronal cells has not yet been tested. Methods: Cell survival and necrosis were assessed with a Cell Counting Kit-8 assay and lactate dehydrogenase release assay, respectively. Mitochondrial depolarization was tested by a JC-1 dye assay. Expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling components were examined by quantitative real-timePCR and western blotting. Results: K6PC-5 protected SH-SY5Y neuronal cells and primary murine hippocampal neurons from oxygen glucose deprivation/re-oxygenation (OGDR). K6PC-5 activated SphK1, and SphK1 knockdown by targeted short hairpin RNA (shRNA) almost completely abolished K6PC-5-induced neuronal cell protection. Further work showed that K6PC-5 inhibited OGDR-induced programmed necrosis in neuronal cells. Importantly, K6PC-5 activated Nrf2 signaling, which is downstream of SphK1. Silencing of Nrf2 by targeted shRNA almost completely nullified K6PC-5-mediated neuronal cell protection against OGDR. Conclusion: K6PC-5 activates SphK1-Nrf2 signaling to protect neuronal cells from OGDR. K6PC-5 might be a promising neuroprotective strategy for ischemia-reperfusion injuries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom