z-logo
open-access-imgOpen Access
miR-135a Protects Dextran Sodium Sulfate-Induced Inflammation in Human Colorectal Cell Lines by Activating STAT3 Signal
Author(s) -
Jingru Zhang,
Bo Lian,
Yan Shang,
Chun Li,
Qingkai Meng
Publication year - 2018
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000495481
Subject(s) - inflammation , stat3 , dextran , cell culture , microbiology and biotechnology , chemistry , sodium , cell , signal transduction , cancer research , medicine , biology , biochemistry , genetics , organic chemistry
Background/Aims: miR-135a is reduced in several cancers and has been suggested to mediate immune and inflammatory responses. However, the effect of miR-135a on inflammatory bowel diseases was obscure. This study firstly attempted to investigate the hypothesis that miR-135a alleviates dextran sodium sulfate (DSS)-induced inflammation in colonic cells and potential mechanisms are also studied. Methods: Caco-2 and HT-29 cells in this study were treated with DSS, miR-135a mimic, and S3I-201, and then CKK-8 assay was used to test cell viability. Expressions of miR-135a, cytokines, and signal transducers and activators of transcription factors (STATs) were determined by RT-PCR. Also, cytokine productions were further tested by using ELISA kits. Activation or inactivation of STAT3 signal was validated by western blotting analysis. Results: The results showed that DSS markedly downregulated miR-135a expression (P< 0.05) and induced inflammatory response in Caco-2 and HT-29 cells evidenced by the up regulations and productions of interleukin-1β (IL-1β) and tumor necrosis factor-ɑ (TNF-ɑ) (P< 0.05). Transfection with miR-135a mimic significantly alleviated DSS-induced upregulation and productions of IL-1β and TNF-ɑ in Caco-2 and HT-29 cells (P< 0.05). STATs were analyzed and miR-135a mimic treatment reversed STAT3 downregulation in DSS-challenged Caco-2 and HT-29 cells compared with the mimic control (P< 0.05). Also, STAT3 phosphorylation was inhibited in DSS-challenged Caco-2 cells and miR-135a mimic activated STAT3 signal (P< 0.05). S3I-201, an inhibitor of STAT3 signal, further used to inactivate STAT3 signal and the results showed that S3I-201 blocked the anti-inflammatory effect of miR-135a mimic on Caco-2 and HT-29 cells evidenced by the lowered expressions and productions of proinflammatory cytokines ((IL-1β and TNF-ɑ) (P< 0.05). Conclusion: Our results indicated that miR-135a alleviated DSS-induced inflammation and activated STAT3 signal in colonic cells. Inhibition of STAT3 reversed the anti-inflammatory function of miR-135a by regulating proinflammatory cytokines. Thus, STAT3 signal might serve, at least in part, as the potential mechanism of miR-135a-mediated anti-inflammatory effect in colonic cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom