z-logo
open-access-imgOpen Access
miR-142-5p Improves Neural Differentiation and Proliferation of Adipose-Derived Stem Cells
Author(s) -
Liang Yang,
Zhifei Wang,
Hao Wu,
Wei Wang
Publication year - 2018
Publication title -
cellular physiology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.486
H-Index - 87
eISSN - 1421-9778
pISSN - 1015-8987
DOI - 10.1159/000495054
Subject(s) - rhoa , rock1 , neurogenesis , microbiology and biotechnology , cellular differentiation , gene knockdown , stem cell , biology , neurite , microrna , neural stem cell , chemistry , signal transduction , cell culture , biochemistry , genetics , in vitro , gene
Background/Aims: MiRNAs may regulate neurogenic differentiation of adipose-derived stem cells (ADSCs). In this study, we hypothesized that the miR-142-5p can repress the expression of RhoA/ROCK1 pathway on the neurogenesis of ADSCs. Methods: Deregulated miRNA during neurogenic differentiation of ADSCs were identified. The expression of neuron-specific enolase (NSE) and β III tubulin (Neuron-specific class III beta-tubulin) were detected as the markers of neurogenic differentiation by immunostaining and western blot. The targeting of miR-142-5p on RhoA and ROCK1 was verified by dual luciferase assay, qRT-PCR and western blot. The roles of miR-142-5p and the RhoA/ROCK1 signaling pathway were explored by using functional experiments including cell viability and colony formation assays. Results: MiR-142-5p is significantly upregulated during neurogenic differentiation of ADSCs. Knockdown of endogenous miR-142-5p hampered neurogenic differentiation. MiR-142-5p could directly target RhoA and ROCK1 mRNA and repress their expressions, through which it increased the proportion of differentiated cells with positive NSE and β III tubulin. RhoA/ROCK1 signaling pathway is involved in miR-142-5p effect on the process of neurogenic differentiation of ADSCs. Conclusion: Our results demonstrate that miR-142-5p functions as a growth promotive miRNA and plays an important role in neurogenic differentiation by targeting RhoA/ROCK1 in ADSCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom